38 research outputs found

    Teaching of chemical bonding: a study of Swedish and South African students' conceptions of bonding

    Get PDF
    Almost 700 Swedish and South African students from the upper secondary school and first-term chemistry university level responded to our survey on concepts of chemical bonding. The national secondary school curricula and most common textbooks for both countries were also surveyed and compared for their content on chemical bonding. Notable differences between the countries were found in textbooks and in the curriculum regarding the topics of ionic bonding, bond energetics and use of the VSEPR model, the latter being absent in the Swedish curriculum and ionic bonding not explicitly mentioned in the South African curriculum. To some extent these differences are reflected in the students' responses to the survey. It is also clear that university teachers in both countries must prepare effective counter-measures against deep rooted misunderstandings. For the upper secondary school level it is suggested that the bond energetics and exothermic and endothermic reactions be clearly and carefully presented and separated as the study indicates that mixing of these two concepts is a major cause of confusion

    Intersystem Crossing versus Electron Transfer in Porphyrin-Based Donor−Bridge−Acceptor Systems: Influence of a Paramagnetic Species

    Get PDF
    We have investigated how the spin state of an acceptor influences the photophysical processes in a donor−bridge−acceptor (D−B−A) system. The system of choice has zinc porphyrin as the electron donor and high- or low-spin iron(III) porphyrin as the acceptor. The spin state of the acceptor porphyrin is switched simply by coordinating imidazole ligands to the metal center. The D−A center−center distance is 26 Å, and the bridging chromophore varies from π-conjugated to a σ-bonded system. The presence of a high-spin iron(III) porphyrin in such systems has previously been shown to significantly enhance intersystem crossing in the remote zinc porphyrin donor, whereas no significant electron transfer to the iron porphyrin acceptor was observed, even though the thermodynamics would allow for photoinduced electron transfer. Here, we demonstrate that by switching the acceptor to a low-spin state, the dominating photophysical process is drastically changed; the low-spin system shows long-range electron transfer on the picosecond time-scale, and intersystem crossing occurs at its “normal” rate

    Temperature and viscosity dependence of the triplet energy transfer process in porphyrin dimers

    Get PDF
    The temperature and viscosity dependence of the triplet energy transfer (TET) process in porphyrin dimers has been studied. A zinc porphyrin (donor) and a free base porphyrin (acceptor) are covalently linked together by rigid bridging chromophores at a center-center distance of 25 Angstrom. Due to the large donor-acceptor distance and the weakness of the spin forbidden transitions involved, neither direct (through space) electron exchange nor Coulombic mechanisms are expected to contribute to the observed TET process. The results from transient absorption measurements at temperatures between room temperature and 80 K show that TET occurs with unexpectedly high efficiency in the systems connected by fully conjugated bridges and a pronounced temperature dependence of the process is observed. Comparison of the TET efficiencies in dimers connected by different bridging chromophores correlates well with a transfer reaction governed by a through bond exchange (superexchange) interaction. However, in high viscosity media the TET process is dramatically slowed down. This is attributed to a conformational gating of the TET process where the electronic coupling varies strongly with the relative orientation of the donor and the bridging chromophore. Further, the zinc porphyrin donor offers two distinct donor species, T-1A and T-1B. At room temperature, the TET rate constant of the T-1A Species is about two orders of magnitude larger than for the T-1B species. The dimers studied are well suited model systems for materials where the rate of the transfer reactions can be changed by external stimuli

    Evidence for electron transfer between graphene and non‐covalently bound π‐systems

    Get PDF
    Hybridizing graphene and molecules possess a high potential for developing materials for new applications. However, new methods to characterize such hybrids must be developed. Herein, the wet‐chemical non‐covalent functionalization of graphene with cationic π‐systems is presented and the interaction between graphene and the molecules is characterized in detail. A series of tricationic benzimidazolium salts with various steric demand and counterions was synthesized, characterized and used for the fabrication of graphene hybrids. Subsequently, the doping effects were studied. The molecules are adsorbed onto graphene and studied by Raman spectroscopy, XPS as well as ToF‐SIMS. The charged π‐systems show a p‐doping effect on the underlying graphene. Consequently, the tricationic molecules are reduced through a partial electron transfer process from graphene, a process which is accompanied by the loss of counterions. DFT calculations support this hypothesis and the strong p‐doping could be confirmed in fabricated monolayer graphene/hybrid FET devices. The results are the basis to develop sensor applications, which are based on analyte/molecule interactions and effects on doping

    Oxidative Coupling as a Biomimetic Approach to the Synthesis of Scytonemin

    Get PDF
    The first total synthesis of the dimeric alkaloid pigment scytonemin is described. The key transformations In Its synthesis from 3-indole acetic acid are a Heck carbocyclization and a Suzuki-Miyaura cross-coupling, orchestrated In a stereospecific tandem fashion, followed by a biosynthetically inspired oxidative dimerization. The tandem sequence generates a tetracyclic (E)-3-(arylidene)-3,4-dihydrocyclopenta[b]indol-2(1H)-one that is subsequently dimerized into the unique homodimeric core structure of scytonemin

    Long-range electron and excitation energy transfer in donor-bridge-acceptor systems

    No full text
    Donor-bridge-acceptor (D-B-A) systems, either as supermolecules or on surfaces, have been extensively studied with respect to long-range electron (ET) and excitation energy (EET) transfer. In more recent years, the main research objective has been to develop knowledge on how to construct molecular-based devices, with predetermined electron transfer properties, intended for application in electronics and photovoltaics. At present, such construction is in general hampered for several reasons. Most importantly, the property of a D-B-A system is not a simple linear combination of properties of the individual components, but depends on the specific building blocks and how they are assembled. An important example is the ability of the bridge to support the intended transfer process. The mediation of the transfer is characterized by an attenuation factor, beta, often viewed as a bridge specific constant but which also depends on the donor and the acceptor, i.e. the same bridge can either be poorly or strongly conducting depending oil the donor and acceptor. This review gives an account of the experimental exploration of the attenuation factor beta in a series of bis(porphyrin) systems covalently linked by bridges of the oligo(phenyleneethynylene) (OPE) type. Attenuation factors for ET as well as for both singlet and triplet EET are discussed. A report is also given on the dependence of the transfer efficiency on the energy-gap between the donor and bridge states relevant for the specific transfer process. The experimental variation of beta with varying donor and acceptor components is shown fora range of conjugated bridges by representative examples from the literature. The theoretical rationalization for the observed variation is briefly discussed. Based on the Gamow tunneling model, the observed variations in beta-values with varying donors and acceptors for the same bridges is simulated Successfully simultaneously as the observed energy-gap dependence is modelled. (C) 2008 Elsevier B.V. All rights reserved

    Excitation energy transfer in donor-bridge-acceptor systems

    No full text
    This perspective will focus on the mechanistic aspects of singlet and triplet excitation energy transfer. Well defined donor-bridge-acceptor systems specifically designed for investigating the distance and energy gap dependencies of the energy transfer reactions are discussed along with some recent developments in computational modeling of the electronic coupling

    On the photostability of scytonemin, analogues thereof and their monomeric counterparts

    No full text
    As a part of their sun-protective strategy, cyanobacteria produce the natural UV-screener scytonemin. Its accumulation in the extracellular sheaths allows the bacteria to thrive in inhospitable locations highly exposed to solar radiation. Scytonemin is often referred to as photostable and has been reported to be non-fluorescent. Taken together, these properties indicate inherently fast non-radiative relaxation processes. Despite these interesting traits, the photophysics of scytonemin is as yet almost completely unexplored. In this study, we have compared the steady-state photophysics of scytonemin itself and four derivatives thereof. Furthermore, the in vitro photostability of scytonemin was studied in different solvents using a solar simulation system. Scytonemin and the investigated derivatives demonstrated a more rapid photoinduced decay in comparison with two commercial UV-screening agents. The photostability could be modulated by varying the solvent, with the protic solvent ethanol providing the most stabilizing environment

    Porphyrin doping of Alq3 for electroluminescence

    No full text
    Organic light emitting devices based on tris(8-hydroxyquinoline)aluminium (Alq3) doped with two fluorescent porphyrin derivatives, 5,15-diphenyl-2,8,12,18-tetraethyl-3,7,13,17-tetramethylporphyrin and the corresponding zinc metalated one, were fabricated. As a consequence, the light emission changed, from standard green light from Alq3, to reddish and yellowish white respectively. The different spectral content in the two cases indicates a possible route to a white light emitter, based on several dopants from the same family of molecules with different central atoms. The turn-on voltage of the devices was not increased by the doping
    corecore